Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38645230

RESUMO

The blood-brain barrier (BBB) is critical for maintaining brain homeostasis but is susceptible to inflammatory dysfunction. Permeability of the BBB to lipophilic molecules shows circadian variation due to rhythmic transporter expression, while basal permeability to polar molecules is non-rhythmic. Whether daily timing influences BBB permeability in response to inflammation is unknown. Here, we induced systemic inflammation through repeated lipopolysaccharide (LPS) injections either in the morning (ZT1) or evening (ZT13) under standard lighting conditions, then examined BBB permeability to a polar molecule, sodium fluorescein. We observed clear diurnal variation in inflammatory BBB permeability, with a striking increase in paracellular leak across the BBB specifically following evening LPS injection. Evening LPS led to persisting glia activation and inflammation in the brain that was not observed in the periphery. The exaggerated evening neuroinflammation and BBB disruption were suppressed by microglial depletion or through keeping mice in constant darkness. Our data show that diurnal rhythms in microglial inflammatory responses to LPS drive daily variability in BBB breakdown and reveals time-of-day as a key regulator of inflammatory BBB disruption.

2.
Circ Res ; 134(6): 748-769, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484026

RESUMO

Mammalian physiology and cellular function are subject to significant oscillations over the course of every 24-hour day. It is likely that these daily rhythms will affect function as well as mechanisms of disease in the central nervous system. In this review, we attempt to survey and synthesize emerging studies that investigate how circadian biology may influence the neurovascular unit. We examine how circadian clocks may operate in neural, glial, and vascular compartments, review how circadian mechanisms regulate cell-cell signaling, assess interactions with aging and vascular comorbidities, and finally ask whether and how circadian effects and disruptions in rhythms may influence the risk and progression of pathophysiology in cerebrovascular disease. Overcoming identified challenges and leveraging opportunities for future research might support the development of novel circadian-based treatments for stroke.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Envelhecimento/fisiologia , Mamíferos
3.
Neuron ; 111(15): 2383-2398.e7, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37315555

RESUMO

The circadian clock protein BMAL1 modulates glial activation and amyloid-beta deposition in mice. However, the effects of BMAL1 on other aspects of neurodegenerative pathology are unknown. Here, we show that global post-natal deletion of Bmal1 in mouse tauopathy or alpha-synucleinopathy models unexpectedly suppresses both tau and alpha-synuclein (αSyn) aggregation and related pathology. Astrocyte-specific Bmal1 deletion is sufficient to prevent both αSyn and tau pathology in vivo and induces astrocyte activation and the expression of Bag3, a chaperone critical for macroautophagy. Astrocyte Bmal1 deletion enhances phagocytosis of αSyn and tau in a Bag3-dependent manner, and astrocyte Bag3 overexpression is sufficient to mitigate αSyn spreading in vivo. In humans, BAG3 is increased in patients with AD and is highly expressed in disease-associated astrocytes (DAAs). Our results suggest that early activation of astrocytes via Bmal1 deletion induces Bag3 to protect against tau and αSyn pathologies, providing new insights into astrocyte-specific therapies for neurodegeneration.


Assuntos
Sinucleinopatias , Tauopatias , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Fatores de Transcrição ARNTL/genética , Astrócitos/metabolismo , Sinucleinopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/metabolismo
4.
J Neuroimmunol ; 332: 73-77, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30959341

RESUMO

The most notable effect of prenatal Zika virus (ZIKV) infection is severe microcephaly. ZIKV has a selective tropism for neural progenitor cells; however, it is not clear what role the immune cells of the brain, microglia, may have in mitigating or exacerbating neuronal cell death following ZIKV infection. We cultured hippocampal and cortical neural cells from neonatal rat pups and infected them with ZIKV at various multiplicities of infection (MOI). We found that the neuroimmune response to ZIKV infection is composed of both pro-inflammatory and type I interferon responses and is largely dependent upon the viral dose.


Assuntos
Células-Tronco Neurais/virologia , Infecção por Zika virus/imunologia , Zika virus/patogenicidade , 2',5'-Oligoadenilato Sintetase/biossíntese , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Feminino , Hipocampo/citologia , Interferon beta/biossíntese , Interleucina-6/biossíntese , Masculino , Microglia/imunologia , Proteínas de Resistência a Myxovirus/biossíntese , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/metabolismo , Ratos , Tropismo Viral
5.
Neurosci Lett ; 657: 32-37, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28774571

RESUMO

During development, microglial progenitor cells migrate into the brain from the periphery, a process critical to the maturation of the developing brain. Although they perform functions similar to mature, adult microglia, immature microglia are distinct from mature microglia. Activation of immature microglia, via an early-life immune challenge, can lead to persistent changes in microglial function, resulting in long-term neuronal and cognitive dysfunction. Early-life immune activation is associated with multiple neurodevelopmental disorders, including autism, ADHD, schizophrenia, and cerebral palsy - disorders with known or suspected immune etiologies, and strong sex biases for males. Activation of immature microglia requires further examination to determine its potential role in these neurodevelopmental disorders. More work is also necessary to better understand the relationship between developing microglia and other developing neural cells during this critical period of development. Thus, we treated freshly isolated, sex-specific microglia from the rat hippocampus with lipopolysaccharide (LPS) on P4, in either the presence or absence of other neural cells. Mixed and microglial-specific cultures were analyzed for inflammatory gene expression to determine whether immature microglia exhibited a sex-specific response to immune activation, and if the presence of all other neural cells influenced that response. We found that the microglial response to an LPS-induced immune activation differed depending on the presence of other neural cells in the culture. We found very few sex differences in the cytokine response, except that the microglial expression of IL-6 following immune activation was more robust in male microglia that were in the presence of other neural cells than female microglia in the same condition.


Assuntos
Citocinas/imunologia , Microglia/imunologia , Transtornos do Neurodesenvolvimento/imunologia , Neuroglia/imunologia , Neurônios/imunologia , Caracteres Sexuais , Animais , Técnicas de Cultura de Células , Feminino , Hipocampo , Interleucina-6/imunologia , Lipopolissacarídeos , Masculino , Transtornos do Neurodesenvolvimento/etiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...